
<u></u> .
AMDL
- 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
012018
Mark Papermas
iviairi apciilia.
CVD 8.CTO Toc
SVF QUIU, IEU
• • • <mark>• •</mark> • • • • • • • • • • • • • •
Fnaineerina

8 TECH DAY

Cautionary Statement

• This presentation contains forward-looking statements concerning Advanced Micro Devices, Inc. (AMD) including but not limited to, AMD's technology roadmap; 12LP technology deployment; AMD's X86 roadmap; AMD's graphics architecture roadmap; AMD's machine learning stack; and the features, functionality, availability, timing, and expected benefits of AMD future products including Radeon™ Instinct Vega 7nm GPUs, which are made pursuant to the Safe Harbor provisions of the Private Securities Litigation Reform Act of 1995. Forward-looking statements are commonly identified by words such as "would," "may," "expects," "believes," "plans," "intends," "projects" and other terms with similar meaning. Investors are cautioned that the forward-looking statements in this presentation are based on current beliefs, assumptions and expectations, speak only as of the date of this presentation and involve risks and uncertainties that could cause actual results to differ materially from current expectations. Such statements are subject to certain known risks and uncertainties, many of which are difficult to predict and generally beyond AMD's control, that could cause actual results and other future events to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. Investors are urged to review in detail the risks and uncertainties in AMD's Securities and Exchange Commission filings, including but not limited to AMD's Quarterly Report on Form 10-Q for the quarter ended September 30, 2017.

SPECULATIVE EXECUTION: AMD PRO

for engaging on security issues. product portfolio. to AMD users.

- AMD has a dedicated team with well-defined process
- AMD worked closely with the ecosystem to fully understand their findings and evaluate risk across
- Due to micro architectural differences and O/S patches being deployed now, we believe there is near zero risk

Google (GPZ) Re

Variant One

Variant Two

Variant Three

	DR SECURITY	
UULJJU	JIVOLVUIVIIII	
Project Zero		
Project Zero		
acaarah Titla	DETAILS	
lesearch Title		
Bounds Check	Resolved by software/OS updates being made available by	
Dounds Check	Resolved by solutioner of updates being made available by	
Bypass	vendors/manufacturers.	
Dypass	venuors/manufacturers.	
	Differences in AMD architecture mean there is a near zero risk,	• • • • • • • • • • • • • • • • • • •
Branch Target	Differences in Aivid architecture mean there is a near zero risk,	
Branch langet	and vulnerability to Variant 2 has not been demonstrated on	• • • • • • • • • • • • • • • • • • • •
Injection		• • • • • • • • • • • • • • • • • • • •
nijeenon	AMD processors to-date.	• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
		• • • • • • • • • • • • • • • • • • • •
Deque Dete		• • • • • • • • • • • • • • • • • • • •
Rogue Data	Zero AMD vulnerability or risk because of AMD architecture	• • • • • • • • • • • • • • • • • • • •
	difference	
Cache Load	differences.	• • • • • • • • • • • • • • • • • • •

CHANGING THE RULES OF

• •	0									0												
			i	_		-																
		•	i		T	-																
			İ																			

															() A	F	S	, ,	3) L	

E ESSENTIAL ING COMPLEX EARNING

IS LAW+

SOFTWARE

COMPILERS OPEN SOURCE LIBRARIES AND FRAMEWORKS

Technology & IPCPU & GPU CORESPACKAGINGINFINITY FABRICTECHNOLOGY

SYSTEM DESIGN

ACCELERATORS NEW MEMORY ARCHITECTURES

ATION: "VEGA" BRIC

"ZEN" CORE COMPLEX

"VEGA" GRAPHICS

MULTIMEDIA ENGINES

INFINITY FABRIC

DISPLAY ENGINE DDR4 MEMORY CONTROLLERS

I/O AND SYSTEM HUB

TECHNOLOGY ROADMAP LEADERSHIP LEVELS THE COMPETITIVE PLAYING FIELD

Va⁻ Pe JCe Perfor

Competition

14 Fin

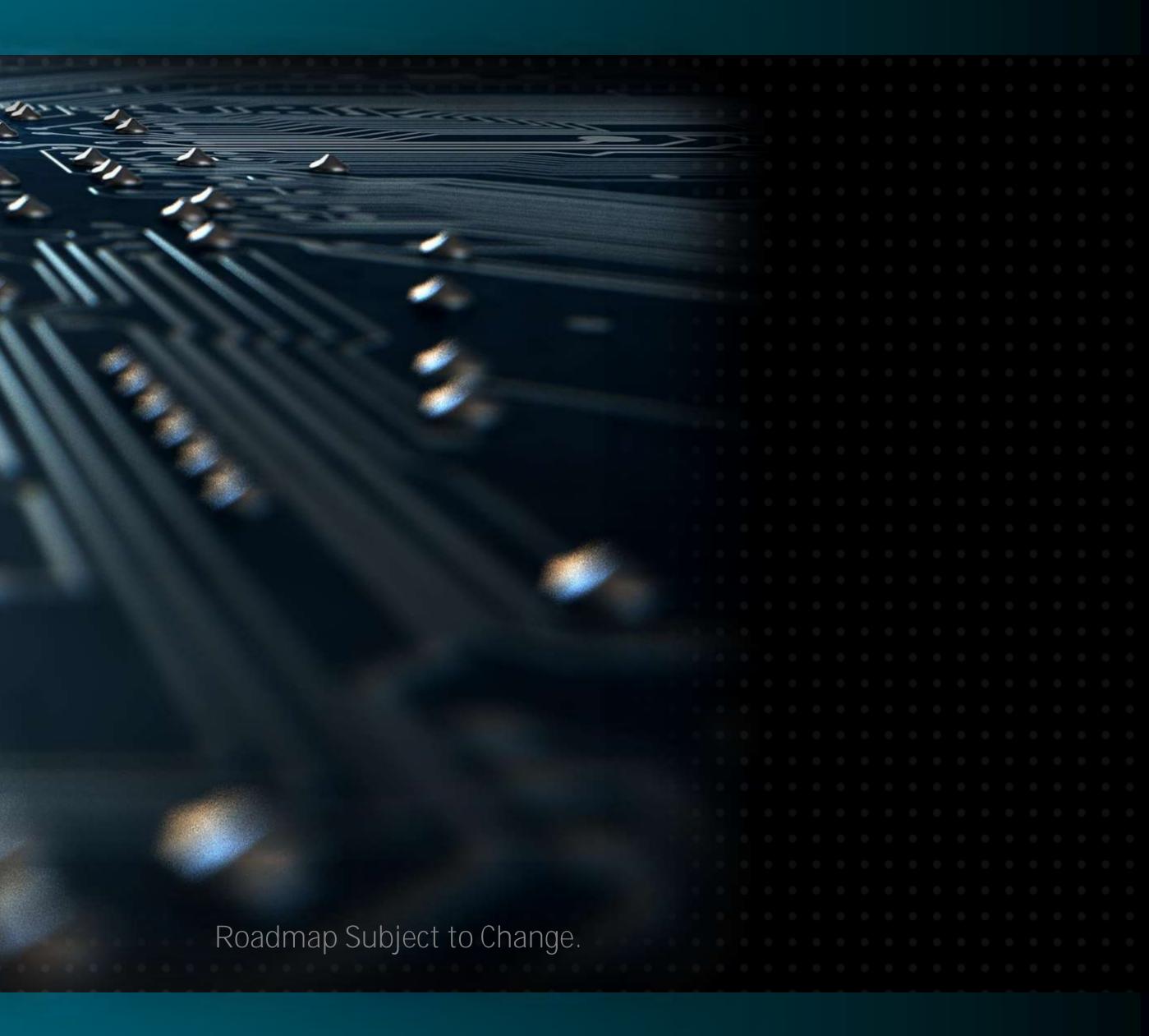
14/16nm -

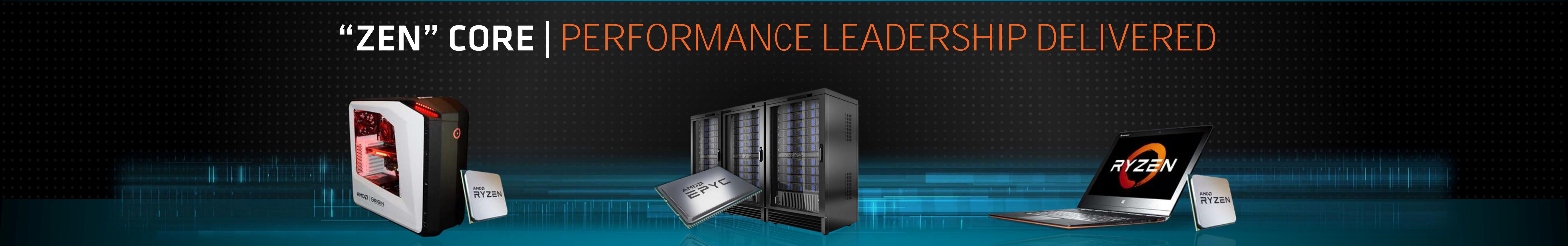
CLOSING THE GAP

10 Fin 7 nm

12 nm

Foundry Best-in-Class


																						C Y
																						F
																						0


chnology nent

Delivers 10+% Performance Vs. 14LPP

Features to Optimize Performance Per Watt

oling 2nd Generation High-Performance CPU today

HEDT Performance in Mainstream Desktops

World Record Server Performance*

World's Fastest Processor for Ultrathins**

ects EPYC 7601 On SPECrate® 2017_fp_peak and SPECfp®_rate2006. ee Endnotes for Details

14nm

Current Products

V" ⁴⁴ZEN+" 12nm

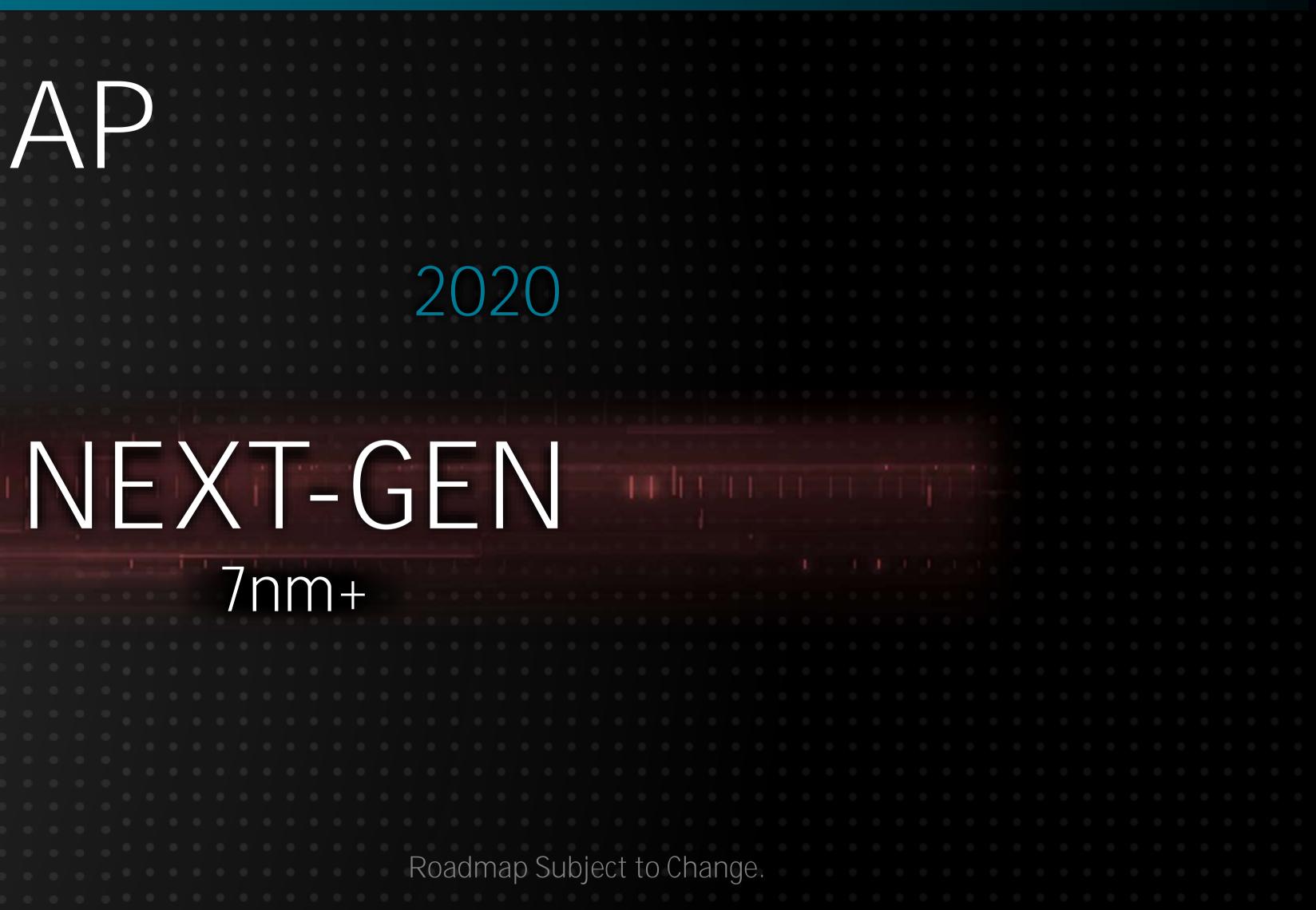
ducts Now Sampling

"ZEN 2" 7 7 7

X86 ROADMAP LEADER

"ZEN 2" Design is Complete Improves on "Zen" in Multiple Dimensions

2020										
EN 3"										
7nm+										
n Track										
Roadmap Sub	ject to (Chang	e.							


"VEGA" 14nm

GRAPHICS ARCHITECTURE ROADMAP

"VEGA" 7nm

7nm

COMPREHENSIVE AMD SOFTWA INFRASTRUCTURE ENABLES EMERGING MI SOLUTIONS

Complete Software Stack Accelerates Developed and Deployment of Custom MI Application

Open Architecture Invites Community Participa Develop Fully Optimized Solutions

	0	0	•	0	0															
RE																				
$m \circ n +$																				
ment																				
IS																				
$+i \sim - + \sim$																				
tion to																				

ANNOUNCING AT CES 2018:

AMD Achieves Production Level Machine Learning Environment

MACHINE LEARNING STACK

WORKLOADS

FRAMEWORKS

OPTIMIZED LIBRARY FOR COMMON PRIMITIVES MIOpen

SOFTWARE STACK

Images & Video, Speech, Natural Language Processing

PROGRA

INTERFA

UNDERL

INFRAS

TensorFlow, Caffe2*

ROCm 1.7

	0 0	0																		
MMING																				
$\frown \Box$																				
CE																				
'ING																				
RUCTURE																				
NUOTOIL																				
				+ ~																
				$^{\circ}$ C	or	nII	ng	S	00)n										
							0													

MACHINE INTELLIGENCE SOFTWARE SUPPORT

RARY UNDERLYING INFRASTRUCTURE

SOFWARE STACK UNDERLYING INFRASTRUCTURE

MIOpen, BLAS, FFT, RNG, RCCL, NCCL,

ROCm, HIP, OpenCL[™], HCC, CUDA

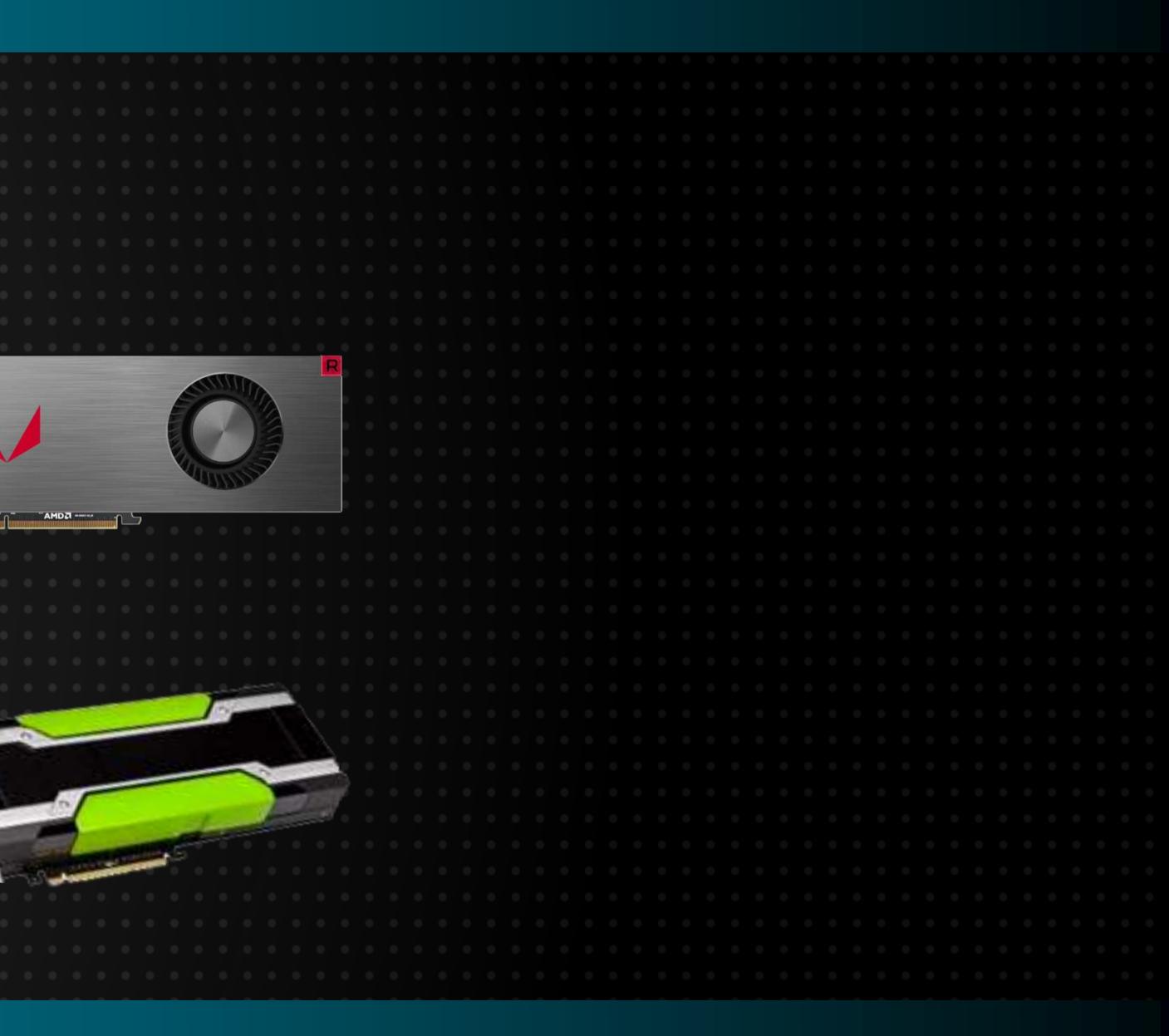
, cu[DNN				
	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				

AMD MA Easy to Dep
CUDA-b
UUDA-U
applica
u o o i cu

ACHINE LEARNING: bloy Porting Capability

Dased ation

"HIPify" Virtually Automatic Conversion


Portable HIP C++

Developer maintains HIP port

AMD

Resulting C++ code runs on NVIDIA or AMD GPUs

NVIDIA

AMD MACHINE LEARNING THE FIRST TOP-TO-BOTTOM OPEN SOLUTION

AMD Enables Complet

Programming Language Accelerated MI Library Accelerated Math Libraries

Communication Library

Runtime

Linux Driver

Documented ISA

rocBL

ete Open Architecture Appl	ication Development
AMD / ROCm	NVIDIA / CUDA
Open-Source HIP	Proprietary (CUDA)
Open-Source MIOpen	Proprietary (cuDNN)
Open-Source LAS, rocRAND, <i>rocFFT, rocSPARSE</i>	Proprietary (cuBLAS, cuRNG, cuFF, cuSPARSE)
RCCL	NCCL
Open-Source ROCr	Proprietary
Open-Source (AMDGPU)	Proprietary
Open (GCN)	Proprietary
	Italics = Under Development.

ENABLI
CHALLENGE -
Huge working data
riage working date
SOLUTION
JOLUHUN
Large HBM local
memory & coher
access between (
in a cluster
macrusto

NG LARGE SCALE ACCELERATED MACHINE LEARN

Security for public cloud & large scale data center deployments

asets

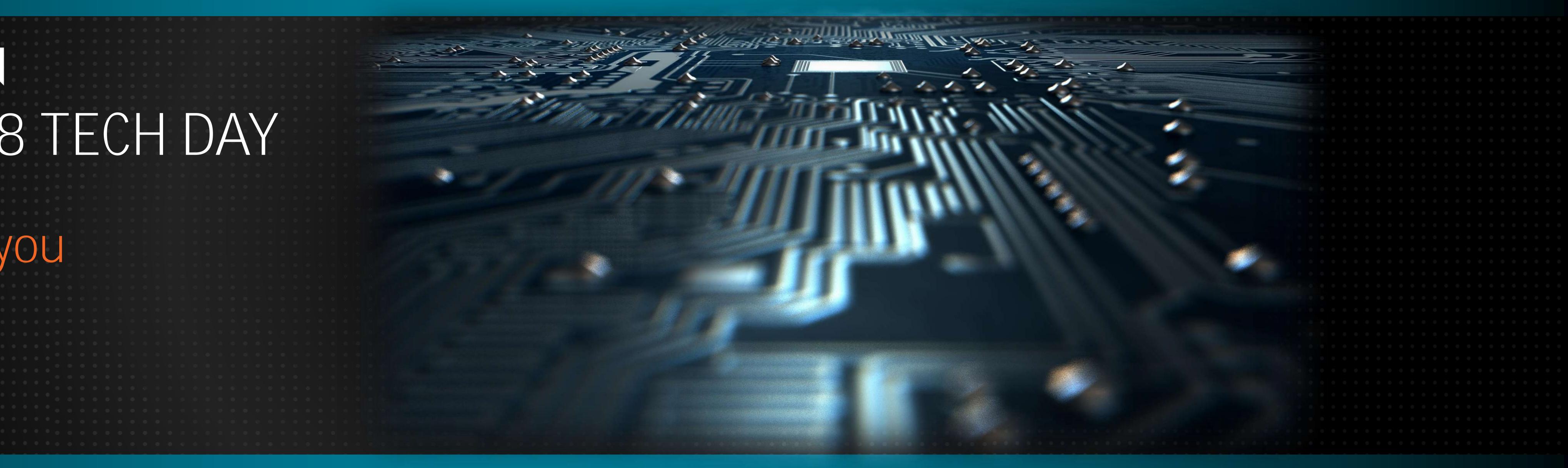
Portability of algorithms & apps across different platform configurations

	Isolate ho	ost from the end	Consist
rent	user with	hardware GPU	differer
GPUs	virtualiza		

Large scale data cente robust platforms

Tent software stack enables nt configurations Same RAS (reliability availability and service capabilities for GPU enterprise-class CPU

ers require ty, viceability)																
ty, viceability) J &																
ers require ty, viceability) I &																
ers require ty, viceability) I &																
ers require ty, viceability) I &																
ers require ty, viceability) I &																
ty, viceability) J &																
ty, viceability) J &																
ty, viceability) J &																
ty, viceability) J &																
viceability) J &																
ty, viceability) J &																
ty, viceability) J &	ors require															
viceability) J &	SISICYUIC															
viceability) J &																
viceability) J &																
viceability) J &																
viceability) J &																
viceability) J &																
viceability) J &																
viceability) J &	+ 1															
J & I	sty, some some															
J & I																
J & I	viceapiiity)															
	J&															
	•••••															



Optimized Enterprise Class E Training and Inference with Enables General Purpose H with New High Speed Primary Markets: Machine Automotive, and High Performa "Vega" 7nm Virtualized Compute with including SR-IOV Su

INTRODUCING MACHINE LEARNING OPTIMIZED RADEON GRAPHICS Radeon[™] Instinct SAMPLING IN 2018

	•••	0													
a a la arbina															
eep Learning															
New DL Ops															
PC Clusters															
d I/O															
e Learning,															
Ŭ															
ance Computing															
ו MX-GPU															
oport															

																								3
																ł	٦	$\mathbf{\tilde{c}}$	3		k		y	/(

End Notes

Slide 2.

"World Record Server Performance" AMD EPYC 7601-based system scored 2060 on SPECfp®_rate2006, higher than any other 2-socket system score published at www.spec.org as of 5 January 2018.Result available at https://www.spec.org/cpu2006/results/res2017q4/cpu2006-20171114-50603.html. EPYC 7601 scored 2060 on SPECfp_rate2006 in AMD internal testing. 2 x EPYC 7601 CPU in HPE ProLiant DL385 Gen10, SUSE Linux Enterprise Server 12 SP3, x86 Open64 v4.5.2.1 Compiler Suite, 1 TB (16 x 64GB 4Rx4 PC4-2666V-L) memory, 1 x 300 GB 15k RPM SAS. SPEC and SPECfp are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. NAP-67

AMD EPYC 7601-based system scored 272 on SPECrate[®]2017_fp_peak, higher than any other 2-socket system score published at www.spec.org as of 5 January 2018. Result available at https://www.spec.org/cpu2017/results/res2017q4/cpu2017-20171114-00845.html EPYC 7601 scored 272 on SPECrate[®]2017_fp_peak in AMD internal testing. 2 x EPYC 7601 CPU in HPE ProLiant DL385 Gen10, SUSE Linux Enterprise Server 12 SP3, AOCC v1.0.0 compiler, 1 TB (16 x 64GB 4Rx4 PC4-2666V-L) memory, 1 x 300 GB 15k RPM SAS. SPEC and SPECrate are registered trademarks of the Standard Performance Evaluation Corporation. See www.spec.org for more information. NAP-68

"Processor for ultrathin laptops" defined as 15W nominal processor TDP. Based on testing of the AMD Ryzen™ 7 2700U, AMD Ryzen™ 5 2500U, and Core i7-8550U 15W mobile processors as of 10/6/2017. Performance based on Cinebench R15 nT ("CPU performance") and 3DMark[®] TimeSpy ("GPU performance") in order of AMD Ryzen 7 2700U, AMD Ryzen 5 2500U and Intel 8550U. AMD Ryzen™ 7 2700U: AMD Reference, AMD Ryzen™ 7 2700U with Radeon™ Vega 10 Processor Graphics, 8GB DDR4-2400 RAM, Samsung 850 PRO 512GB SATA SSD, Windows 10 Pro RS2, Graphics driver 23.20.768.9, 26-Sep-201